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Abstract

Physical rehabilitation of people with reduced mobility implies to monitor the
movements of the patients during the rehabilitation sessions, so to individual-
ize the therapy patient by patient. A serious-games company, NaturalPad (NP),
would like to develop a cheap real-time markerless skeleton tracking device
ensuring diagnosis assistance of neuromuscular and articular pathologies among
reduced mobility persons such as elderly, post-stroke and persons affected by
disability. In this way, the goal of this device is to precisely assess 3D body joints
coordinates in real-time, that will be used to format accurate indicators about
articular capacities of the patient during a physiotherapy session. These indica-
tors, such as the Range of Motion (ROM) of each articulation, will be printed
on a Graphical User Interface (GUI), so the physiotherapist can monitor the
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evolution of the patients pathologies. After giving details about related studies,
we will explicit technological requirements and project constraints. Last we will
define a benchmark process of existing skeleton tracking algorithms and cheap
motion capture devices. The results will allow us to evaluate if there is an enough
accurate camera/algorithm combination to deal with our issues.
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1 Related works and technological requirements
1.1 Device and algorithm requirements

TheKinectv2'and Unity3D?are interesting tools to develop real-time interaction
games for physical rehabilitation [1-2]. Actually, a lot of movements are sup-
ported by NPs serious games platform, such as steps, chest inclination, hands
movement and squatting series. We are able to have precise enough skeleton data
to improve functional autonomy among older adults [2-3]. Nevertheless, due to
Kinect imprecision, we are unable to correctly recognize head inclinations,
ankle/chest rotations and center of mass approximation. Moreover, the Kinect
skeleton tracking algorithm doesn’t take into account osseous and articular
constraints of human body, so it’s not precise enough for detailed articular
angles analysis [2]. Yet, our device must respect skeletal constraints to be used
for joints angles assessment.

Thus, the device needs to fulfill 3 technological constraints: 1) being able
to handle RGB and/or depth data for real-time interaction in games, 2) being
able to extract accurate enough 3D coordinates of the patients articulations to
estimate articulations angles for diagnosis purposes, and 3) being sensor agnos-
tic. The combination sensor/algorithm and hardware configuration have to be
as cheap as possible, because of commercial constraints. The final device must
be easy to set up, thereby the physiotherapist won’'t have to reconfigure and
calibrate the set up between two sessions.

1.2 Clinical uses of depth cameras

Many studies [5-12] have examined the Kinect for assessment and balance
control. They indicate that for relatively slow movements, the Kinect can give
enough accurate skeleton data to perform dynamic tests as functional reach, sit

! http://www.arzapstudio.com/kinect-for-windows/.
* https://unity.com/.
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to stand and timed up and go. Encouraging results also shown that the Kinect
sensor can be useful for medical diagnosis and monitoring of patients suffering
from Parkinsons, scoliosis and post-stroke diseases [13-15]. However, as we
want to estimate articular capacities, were not sure if Kinect is worthwhile given
the inaccuracy associated with some of the variables extracted by the sensor
[5]. This is particularly true considering the turning movement, as the Kinect
cannot accurately record postural movement when the patient performs the
turn. Very recent studies [16-19] already worked on medical diagnosis with
depth sensors. In [16], a serious games platform is conceived for home-based
rehabilitation after the hospitalisation period, with automated evaluation of the
patient during the training. Clinical indicators are extracted, such as neglected
body areas during session or errors in limbs trajectory. In [16-18] its shown
that depth-sensors can be useful for post-stroke rehabilitation serious games
and motor function diseases diagnosis among elderly. The study in [19] also
demonstrates very encouraging results in clinical data assessment using Intel
RealSense depth cameras.

1.3 Joint angles estimation

As a reminder, the device we want to develop should be able to precisely extract
3D coordinates of skeleton joints in real-time, accurately estimate joint angles
during a physiotherapy session, and, in the ideal case, during a serious-game
session. Several studies [20-23] used markerless motion capture systems to
estimate joint angles and compared these values with ground truth to estimate
the accuracy of the depth sensor for such task. Studies [20-22] assessed the joint
angles estimation accuracy of the Kinect for clinical uses. Marker based motion
capture systems were used in [20-21] as ground truth, while [22] used an IMU
device. [20] concluded that the Kinect system is not yet suitable for clinical
assessments while [21] concluded the opposite. This contrast is explained by
the fact that [20] uses a VICON system as ground truth, yet, studies [24-25]
shown that there can be interferences between VICON and Kinect that slant
the joints coordinates assessment of the Kinect [21] used a jig as guinea pig,
instead of real humans, which can distort the results [22] demonstrates that
the Kinect is efficient in knee joint angle estimation, which is not sufficient as
we want accuracy on all body joints. As far as we know, there is no marker-
less device that aims accurately estimating joint angles in real-time to deduce
articular capacities of the patient in the context of medical diagnosis support.

1.4 Real-time human pose estimation

Several papers [26-31, 43] tackled the 3D real-time human pose estimation
issue. Even if [27] estimates only 2D joint coordinates, we will keep it for our
benchmark, for several reasons: 1) It works in real-time on cheap hardware
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2) We can deduce 3D coordinates from 2D [32] 3) It uses a monocular RGB
camera, which is cheap 4) We want to verify if its accurate for joint angles
estimation. We already eliminated [26, 28-31] because of License require-
ments (cost or lack of documentation). Implementations remaining for the
benchmark are [27], Nuitrack, Kinect SDK v2 and Orbbec SDK. First of all,
we aim to determine the level of accuracy we can obtain with state-of-the-art
real-time skeleton tracking algorithms and a single sensor. We will benchmark
different combinations of algorithms/sensors to determine which couple is
the best, using the constraints mentioned in 2)a) as criteria to select the best
combination camera/algorithm. Then, physiotherapists will assess the clinical
relevance of the best combination in selected use cases, for diagnosis and
physical rehabilitation.

2 Benchmarking process

For this benchmark, we will test the skeleton tracking algorithms mentioned
above and following markerless motion capture devices: Microsoft Kinect v2,
Orbbec Astra, Intel RealSense D435i, Regular webcam (for [27]). We will assess
the error of pose estimation for each sensor/algorithm combination. To calcu-
late the estimation error for each device, we will use a state of the art motion
capture system (VICON, Oxford metrics)® as reference system. We will record
the movements with the two systems, and will compare the 3D coordinates
values given by the VICON with 3D coordinates values given by the tested
device/algorithm combination. As mentioned above, the VICON system infra-
red waves can interfere with markerless sensors. A protocol is defined in [24] to
minimize this noise, so we will reduce the number of markers and the distance
between Kinect and the volunteer. Then, we will implement the following steps:
1) Collecting skeleton data from Vicon and Tested Camera 2) Synchronize
the data in Time, as Vicon and cameras have different frequencies 3) Com-
pute each joints angles thanks to cosines law and calculate the angles assess-
ment error of each camera/algorithm combination 4) Selection of the opti-
mal combination. The last step will consist in comparing the joints angle
assessment accuracy of the optimal solution with the accuracy needed
by physiotherapists.

3 Further researches

Actually Convolutional Neural Networks (CNNs) are widely used for monoc-
ular 3D human pose estimation and show the most accurate results [46].
Nevertheless, both top-down and bottom-up approaches don't take into
account the human skeleton constraints. Our approach will consist in using

* http://www.vicon.com.
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Denavit-Hartenberg (D-H) convention to model geometric and kinematic
skeleton [45]. Coupled with CNN algorithm we theoretically will be able to
have an accurate and constrained skeleton [43] shows we can enhance joints
coordinates estimation with integrating skeleton constraints during the train-
ing process. Moreover, without going into the algorithm technicalities, we can
add human skeleton constraints in two other ways:

- Refine identified human silhouettes (works for top-down approaches) with
D-H before recognizing joints on the silhouette

— Refine the pose with D-H after joints coordinates assessment (works for
both bottom-up and top-down approaches)

We think both of these refinement steps would enhance accuracy and realism
of extracted skeleton coordinates. However, this will have an impact on com-
putational speed that we will have to keep reasonable. Depending on obtained
results, we will remove some cost constraints to compute a heavy algorithm on
costly hardware device.
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