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This work has explored the theoretical principles of Mutual Information 
and Entropy and their use as combined acquisition score. The work looked 
at mutual information and entropy combined score values produced from 
a deep learning model trained to segment preclinical CT scans, which 
supported the investigation into its use in an active learning pipeline as 
an information metric, to guide the selection of data from the unlabelled 
data pool to incorporate into the training set. The work has shown that the 
combined acquisition function shows promise. Further refinement and 
validation are necessary to fully establish its utility in active learning tasks.
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INTRODUCTION

Medical image segmentation is a fundamental and 
necessary task performed when analysing CT images. 
Deep learning has been shown to be useful in medical 
image segmentation. However, it faces issues including the 
requirement of large amounts of labelled data to act as the 
ground truth reference during training. Obtaining annotated 
data by experts is an expensive and time-consuming task 
[1]. An approach used to reduce the need for large amounts 
of annotated data is Active Learning (AL) [2].

The goal of AL is to select the most valuable and informative 
data from an unlabelled data pool to be labelled and added 
to the training set, to minimize the overall amount of data 
needed to be labelled. In AL, instead of labelling a large 
dataset, it iteratively acquires labels from an expert only 
for the most informative or uncertain data points from 
a unlabelled data pool. Following each acquisition step, 
the recently labelled data points are incorporated into 
the training set, and the model undergoes retraining. This 
iterative procedure continues until a satisfactory level of 
accuracy is attained [3].

In AL, the informativeness or uncertainty of new data points 
is assessed by an acquisition function. Acquisition functions 
can include entropy, least confident, margin and density-
based sampling [4]. E!ective metrics are essential for 
guiding the selection of informative samples. It is the most 
crucial component and the primary distinguishing factor 
among AL methods in the literature. 

The main aim of this work is to present a base model 
trained on a minimal dataset that can be used for preclinical 
segmentation and utilise the model to show how an 
information metric, along with an uncertainty metric, can be 
used in AL as an acquisition function to guide the selection 
of data to incorporate into the training set.

MATERIALS AND METHODS

Deep Learning Model
The dataset used to train the base model was obtained 
from the Positron Emission Tomography Imaging Centre 
(PETIC). The data consisted of 76 preclinical CT scans of 
mice, all with corresponding ground truths with 6 labels 
corresponding to background, skeleton, liver, kidney, le" 
tumour and right tumour. The ground truths were manually 
outlined by an expert user from PETIC. 20 randomly selected 
scans including their ground truths were used in a 80:20 
split for training, where 16 samples were used for the initial 
training and 4 samples were used for testing. The remaining 
56 scans created the unlabelled data pool. Additional 
preprocessing of the dataset was performed including 
resampling and resizing the scans to make the dimensions 
coincide together. 

The base model was developed to predict the segmentation 
masks of the data utilizing Ni"yNet open-source platform 
[5]. For the network architecture, a dense VNet was used 
with an initial learning rate of 0.001 along with the Adaptive 
Moment estimation (Adam) optimiser. The model was 
trained on the training set for 3000 iterations on whole 
images. Following training inference was performed on 
the test scans within the testing set to produce predicted 
segmentations and on the unlabelled data pool to produce 
the predicted segmentation and the probability masks.

The metric employed to evaluate the performance of 
the model and thus segmentation was the Dice Score 

Coe!icient (DSC). The DSC shows the similarity between the 
predicted segmentation and the ground truth by measuring 
the overlap and is calculated using Eq. 1. 

 (1)

Where GT is the ground truth mask and SM is the segmented 
predicted mask. | GT ∩ SM | is the number of pixels common 
to both the segmented predicted mask and the ground truth 
mask. |GT| is the total number of pixels in the ground truth 
mask and |SM| is the total number of pixels in the segmented 
predicted mask [6]. A DSC of 0.7 and above is considered to 
have good overlap [7].

Active Learning Acquisition Function  
Two acquisition functions were combined to create one 
final score, which is applied following inference of the 
unannotated pool. The final score consists of the uncertainty 
function which calculates the uncertainty associated with 
the prediction of the model for image x. The entropy is used 
as the measure of predictive uncertainty. The entropy (H) of 
an image x for a n-class task is defined in Eq. 2.

 (2)

P(yi\ x) is the probability that the current sample x is 
predicated to be of class yi . A higher entropy corresponds 
to a higher uncertainty, thus suggesting lower overall 
confidence [8]. 

The second part of the acquisition function is the Mutual 
Information (MI). In general, MI evaluates the degrees of 
relatedness between two variables [9]. In terms of images 
calculates the similarity between two images. MI of two 
random variables A and B is defined by Eq. 3.

 (3)

Where PA (a) and PB (b) are the marginal probability 
functions and PA,B (a,b) is the joint probability function. 
MI measures the degree of dependence of A and B by 
measuring the distance between the joint probability 
and the probability associated with the case of complete 
independence [10]. The MI is 0 if the two variables are 
independent, meaning there is no relationship between 
them and if the two variables are dependent MI is greater 
than 0 [11]. 

The MI is normalised to produce the normalised mutual 
information (NMI) using Eq. 4 proposed by [12]. 

 (4)

Where H(A) is the entropy of A and H(B) is the entropy of B 
and H(A,B) is the joint entropy of A and B. 

The final scoring function is calculated by combining MI and 
entropy and can be expressed as Eq. 5. 

            (5)

MI(x, Xtrain ) represents the NMI between the image  from 
the unannotated data pool and the training dataset and 
the  Uncertainty(x) represents the uncertainty with the 
model’s prediction of the segmentation for image x from the 
unannotated data pool. 
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The terms are weighted by coe!icients  and  that control the 
contribution of uncertainty and NMI to the overall score. By 
adjusting these coe!icients, one aspect can be prioritised 
over the other based on the specific requirements of the 
learning task. 

The images with the highest combined score would be 
selected. These images represent those with a high entropy 
which indicates high uncertainty meaning the model has 
lower confidence in the correct label for that image and 
low MI meaning they contain information that the current 
training set doesn’t contain. 

Implementation 
The DSC was calculated for each label in the predicted 
segmentation of the test images and the average taken 
across them.

The NMI was calculated on a label basis, by making 
comparisons of histograms of CT intensity values in 
the training set versus the unannotated data pool. The 
background label was ignored, to focus on the relevant 
regions of interest as background can introduce noise 
and unnecessary complexity. Each image within the 
unannotated pool has 16 values for each label and the 
average is taken per label. The overall average NMI value is 
the taken per image and these were normalised for the set. 

To calculate the entropy of each image in the unannotated 
data pool, the predicted segmentations are used and the 
entropy is calculated for each pixel and the average is taken 
across the image. These were then normalised for the set. 

The two calculations were combined as shown in Eq. 45 
to provide a final score for each image in the unannotated 
data pool. To demonstrate the e!ectiveness of the 
combined acquisition score the DSC is used, as a low DSC 
indicates poor segmentation performance, suggesting 
that the sample is informative and should be added to 
the training pool. If the combined acquisition function 
consistently identifies samples with low DSC, it indicates 
that the combined function is e!ectively selecting the most 
informative samples.

RESULTS

The predicted segmentations were analysed using the DSC 
for each label in the test images and the average taken 
across them as shown in Table.1 Test image 4 had no le" 
tumour present. 

Labels

Test 
Image 0 1 2 3 4 5 Average

1 1.0 0.9 0.7 0.6 0.4 0.5 0.7

2 1.0 0.8 0.6 0.6 0.6 0.5 0.7

3 1.0 0.9 0.5 0.7 0.7 0.6 0.7

4 1.0 0.9 0.5 0.8 N/A 0.4 0.7

Table 1. Dice coe!icient score for test images.

The images within the unannotated data pool are labelled 
0-56 for display purposes and ease, where each number 
refers to a di!erent image. 

The average NMI and the average entropy per image were 
combined and the values are demonstrated in the bar chart 
in Fig. 1. The bar chart is ordered from lowest to highest 
where each bar represents a di!erent image and the height 
of the bar represents the combined score consisting of 
entropy and NMI for that image. Within the graph, a line has 
been drawn, where the line acts as a cut-o! point. All data 
to the right of the bar represent images that would be sent 
to the oracle for annotation as they represent images with 
both high entropy (indicating high uncertainty) and low 
mutual information (indicating information not present in 
the current training set) and all data to the right of the bar 
would not be annotated.

Fig. 1. Combined score per image of the image in the unannotated  
data pool.

The DSC were calculated for each image, ignoring the 
background, in the unannotated data pool, where the 
average DSC has a value of 0.6 and ranges from 0.2 to 0.8. 

Based on the analysis, the combined acquisition score 
exhibits a Pearson correlation coe!icient of   -0.25 with the 
DSC, reflecting a slight negative correlation as depicted in 
Fig. 2. The p-value obtained was 0.059.

Fig. 2. Correlation plot between the combined acquisition score and  
the dice score.
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DISCUSSION

The dice coe!icient values showed the model performed 
well as all test scan segmentations had an average dice 
score of 0.7 showing good overlap when compared to the 
ground truth.

The Pearson correlation coe!icient of -0.25 reflects a slight 
negative correlation. This suggests that higher acquisition 
scores tend to be associated with lower DSC, indicating that 
the function may have a tendency, albeit modest, to select 
more informative samples for model enhancement.

While the p-value of 0.059 slightly exceeds the conventional 
significance threshold of P<0.05, it remains close to this 
boundary, hinting at a potential trend where the acquisition 
function targets challenging samples for labelling. This near-
significant result suggests that our acquisition function may 
be on the cusp of demonstrable e!ectiveness in enhancing 
the active learning process. Additionally, it’s important 
to note that the e!ectiveness of the acquisition function 
does not necessarily depend on a linear relationship. The 
nuanced nature of data distribution and the complexity 
of the learning model might mean that non-linear 
relationships are also of substantial value in improving 
model accuracy. This insight provides an encouraging 
direction for further refinement and potential adjustments 
to the acquisition strategy to better capture and utilize 
informative samples for improving the model performance.
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